

10CV833

Eighth Semester B.E. Degree Examination, Aug./Sept.2020 **Pavement Design**

Time: 3 hrs.

1

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least TWO full questions from each part. 2. Use of specified charts and tables is permitted.

PART – A

- With a neat sketch of cross section of flexible type pavement, explain the various a. components and briefly bringout their functions. (10 Marks)
 - Bring out the differences between highway pavements and airfield pavements. b. (05 Marks) (05 Marks)
- Explain the differences between Rigid and Flexible pavements. C.
- Explain the factors that affect design and performance of highway pavements. 2 a. (06 Marks) Plate bearing tests were conducted with a 75cm diameter plate on soil subgrade and a b. granular base. The stress notices, when the deflection was 0.25cm on the subgrade soil was 0.07MN/m². On the base course, the same plate yielded 0.25cm deflection under a stress of 0.14MN/m². Design the pavement for an allowable deflection of 0.5cm, under a wheel load of 40kN and a tyre pressure of 0.5 MN/m². (14 Marks)

Explain the following : i) Contact pressure ii) ESWL concept. 3 a. (10 Marks) Write Mc-Leod's procedure for determining equivalent load factors. b. (10 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

1 of 2

10CV833

- 4 a. Explain briefly CBR method by cumulative standard Axle load for the design of flexible highway pavements. (10 Marks)
 - b. Design a flexible highway pavement section by Triaxial test method (Kansas method) using the following data:

8		
Wheel load	= 44kN	
Radius of contact area	= 160mm	
Traffic coefficient X	= 1.7	
Rainfall coefficient Y	= 0.95	
Design deflection	= 2.8mm	~
E value of subgrade soil, E _s	$= 100 \times 10^2 \mathrm{kN/m^2}$	
E value of base course material, E _b	$=400 \times 10^2 \text{ kN/m}^2$	G
E-value of 75mm thick Bituminous		
concrete surface course	$= 1000 \times 10^2 \text{ kN/m}^2$	•

(10 Marks)

<u> PART – B</u>

- 5 a. Explain the following: i) Radius of Relative stiffness ii) Radius of Resisting section iii) Modulus of Subgrade reaction iv) Fatigue Behavior of concrete. (10 Marks)
 - b. Calculate the stresses at the interior, edge and corner regions of a cement concrete pavement using Westergaard's stress equations. Assume the following:

Wheel load	= 42 kN
Modulus of elasticity of concrete	$= 0.28 \times 10^8 \text{kN/m}^2$
Pavement thickness	= 0.18m
Poisson's Ratio of concrete	= 0.15
Modulus of subgrade reaction	$= 2.7 \times 10^4 \text{kN/m}^3$
Radius of contact area	= a = 0.15m

(10 Marks)

6 a. As per IRC explain the steps involved in the design of Dowel bars in rigid CC pavements.

(10 Marks)

- b. Determine the spacing between contraction joints for 3.5m slab width having thickness of 20cm. Consider the following two cases.
 - i) For Plain cement concrete
 - ii) For reinforced cement concrete.

Take f = 1.5, γ for CC = 24kN/m³

Allowable tensile stress in $CC = 80 \text{kN/m}^2$

Allowable tensile stress in steel = 6×10^4 kN/m²

 γ for steel = 75kN/m³

Total reinforcement of 60kN/m² is provided and is equally distributed in both the directions. (10 Marks)

- 7 a. Explain any four typical flexible pavement failures with sketches. (08 Marks)
 - b. Discuss the functional evaluation by Benkelman Beam deflection method. (08 Marks)
 - c. Mention design factors for runway pavements and explain any one. (04 Marks)
- 8 Write short notes on any four of the following:
 - a. Maintenance measures in rigid pavements.
 - b. Functional evaluation by visual inspection
 - c. Design methods for airfield pavements
 - d. Unevenness measurements
 - e. Rigid pavement failures.

(20 Marks)

2 of 2

